Telegram Group & Telegram Channel
🐍 Ошибка с изменяемыми значениями по умолчанию»**

🎯 Цель: Найти и объяснить баг, который не вызывает исключений, но ломает логику приложения

📍 Ситуация:

У тебя есть функция, которая логирует события с метаданными. По умолчанию метаданные можно не передавать:


def log_event(event, metadata={}):
metadata["event"] = event
print(metadata)


На первый взгляд — всё работает. Но при многократных вызовах функции происходит что-то странное:


log_event("start")
log_event("stop")
log_event("error", {"code": 500})
log_event("retry")


👀 Вывод:

{'event': 'start'}
{'event': 'stop'}
{'code': 500, 'event': 'error'}
{'code': 500, 'event': 'retry'}


🔍 Что пошло не так? Почему code: 500 появляется там, где его быть не должно?

🧩 Задача:

1. Найди и объясни источник бага
2. Почему Python не выбрасывает ошибку?
3. Как проверить, что дефолтный аргумент сохраняет состояние между вызовами?
4. Как это исправить безопасно и "по питоновски"?
5. Где ещё может проявиться аналогичный эффект?


🛠 Разбор и решение:

🔸 Причина:
Изменяемое значение (`dict`) используется как значение по умолчанию.
В Python значения по умолчанию вычисляются один раз при определении функции, а не при каждом вызове.

То есть
metadata={} создаётся один раз и сохраняется между вызовами, если параметр не передан.

🔸 Проверка:

def f(d={}):
print(id(d))
d["x"] = 1
print(d)

f()
f()


Вы увидишь одинаковые
id(d) — значит, используется тот же объект.

🔸 Решение (правильный способ):

def log_event(event, metadata=None):
if metadata is None:
metadata = {}
metadata["event"] = event
print(metadata)


Теперь при каждом вызове создаётся новый словарь, и
code: 500 не "протекает" в следующие вызовы.

🔸 Где ещё встречается:
- Списки:
items=[]
- Множества:
visited=set()
- Объекты пользовательских классов

📌 Вывод:
Изменяемые значения по умолчанию — одна из самых частых ошибок в Python. Она не вызывает исключений, но может незаметно повредить данные. Всегда используй
None + инициализацию внутри функции для изменяемых типов.

@pythonl



tg-me.com/pythonl/4839
Create:
Last Update:

🐍 Ошибка с изменяемыми значениями по умолчанию»**

🎯 Цель: Найти и объяснить баг, который не вызывает исключений, но ломает логику приложения

📍 Ситуация:

У тебя есть функция, которая логирует события с метаданными. По умолчанию метаданные можно не передавать:


def log_event(event, metadata={}):
metadata["event"] = event
print(metadata)


На первый взгляд — всё работает. Но при многократных вызовах функции происходит что-то странное:


log_event("start")
log_event("stop")
log_event("error", {"code": 500})
log_event("retry")


👀 Вывод:

{'event': 'start'}
{'event': 'stop'}
{'code': 500, 'event': 'error'}
{'code': 500, 'event': 'retry'}


🔍 Что пошло не так? Почему code: 500 появляется там, где его быть не должно?

🧩 Задача:

1. Найди и объясни источник бага
2. Почему Python не выбрасывает ошибку?
3. Как проверить, что дефолтный аргумент сохраняет состояние между вызовами?
4. Как это исправить безопасно и "по питоновски"?
5. Где ещё может проявиться аналогичный эффект?


🛠 Разбор и решение:

🔸 Причина:
Изменяемое значение (`dict`) используется как значение по умолчанию.
В Python значения по умолчанию вычисляются один раз при определении функции, а не при каждом вызове.

То есть
metadata={} создаётся один раз и сохраняется между вызовами, если параметр не передан.

🔸 Проверка:

def f(d={}):
print(id(d))
d["x"] = 1
print(d)

f()
f()


Вы увидишь одинаковые
id(d) — значит, используется тот же объект.

🔸 Решение (правильный способ):

def log_event(event, metadata=None):
if metadata is None:
metadata = {}
metadata["event"] = event
print(metadata)


Теперь при каждом вызове создаётся новый словарь, и
code: 500 не "протекает" в следующие вызовы.

🔸 Где ещё встречается:
- Списки:
items=[]
- Множества:
visited=set()
- Объекты пользовательских классов

📌 Вывод:
Изменяемые значения по умолчанию — одна из самых частых ошибок в Python. Она не вызывает исключений, но может незаметно повредить данные. Всегда используй
None + инициализацию внутри функции для изменяемых типов.

@pythonl

BY Python/ django


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/pythonl/4839

View MORE
Open in Telegram


Python django Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

Python django from de


Telegram Python/ django
FROM USA